extend numerical radius for adjointable operators on Hilbert C^* -modules

Authors

  • B. MOOSAVI Department of Mathematics, Safadasht Branch, Islamic Azad Univer- sity, Tehran, Iran.
  • M. Shah Hosseini Department of Mathematics, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran.
Abstract:

In this paper, a new definition of numerical radius for adjointable operators in Hilbert -module space will be introduced. We also give a new proof of numerical radius inequalities for Hilbert space operators.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

*-frames for operators on Hilbert modules

$K$-frames which are generalization of frames on Hilbert spaces‎, ‎were introduced‎ ‎to study atomic systems with respect to a bounded linear operator‎. ‎In this paper‎, ‎$*$-$K$-frames on Hilbert $C^*$-modules‎, ‎as a generalization of $K$-frames‎, ‎are introduced and some of their properties are obtained‎. ‎Then some relations‎ ‎between $*$-$K$-frames and $*$-atomic systems with respect to a...

full text

Perturbation of Adjointable Mappings on Hilbert C-modules

Let X and Y be Hilbert C∗-modules over a C∗-algebra, and φ : X ×Y → [0,∞) be a function. A (not necessarily linear) mapping f : X → Y is called a φ-perturbed adjointable mapping if there exists a (not necessarily linear) mapping g : Y → X such that ‖〈f(x), y〉 − 〈x, g(y)〉‖ ≤ φ(x, y) (x ∈ X , y ∈ Y). In this paper, we investigate the generalized Hyers–Ulam–Rassias stability of adjointable mapping...

full text

Products Of EP Operators On Hilbert C*-Modules

In this paper, the special attention is given to the  product of two  modular operators, and when at least one of them is EP, some interesting results is made, so the equivalent conditions are presented  that imply  the product of operators is EP. Also, some conditions are provided, for which the reverse order law is hold. Furthermore, it is proved  that $P(RPQ)$ is idempotent, if $RPQ$†</...

full text

Stability of Adjointable Mappings in Hilbert C-Modules

The generalized Hyers–Ulam–Rassias stability of adjointable mappings on Hilbert C∗-modules are investigated. As a result, we get a solution for stability of the equation f(x)∗y = xg(y)∗ in the context of C∗-algebras. ∗2000 Mathematics Subject Classification. Primary 39B82, secondary 46L08, 47B48, 39B52 46L05, 16Wxx.

full text

Regular Operators on Hilbert C * -modules

A regular operator T on a Hilbert C *-module is defined just like a closed operator on a Hilbert space, with the extra condition that the range of (I + T * T) is dense. Semiregular operators are a slightly larger class of operators that may not have this property. It is shown that, like in the case of regular operators, one can, without any loss in generality, restrict oneself to semiregular op...

full text

The reverse order law for Moore-Penrose inverses of operators on Hilbert C*-modules

Suppose $T$ and $S$ are Moore-Penrose invertible operators betweenHilbert C*-module. Some necessary and sufficient conditions are given for thereverse order law $(TS)^{ dag} =S^{ dag} T^{ dag}$ to hold.In particular, we show that the equality holds if and only if $Ran(T^{*}TS) subseteq Ran(S)$ and $Ran(SS^{*}T^{*}) subseteq Ran(T^{*}),$ which was studied first by Greville [{it SIAM Rev. 8 (1966...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 4  issue 15

pages  81- 86

publication date 2018-10-23

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023